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Abstract

In two-stage course placement systems, students first take a screening test.
Students who score at or above the screening test cutoff score K enroll directly in a
standard college course, whereas those who score below K take a placement test.
Students who subsequently score at or above the placement test cutoff K’ also enroll in
the standard course. Consequently, students in the standard course will not have
placement test scores below K’. Moreover, placement test scores are somewhat truncated
above K’, because students who earned scores above K on the screening test did not have
to take the placement test. Hence, their placement test scores, which likely would have
equaled or exceeded K', are “missing.”

Previous research has only examined truncation in one-stage placement systems,
in which it occurs below, but not above, the cutoff score. In this study, the effects of
truncation on estimated optimal cutoffs, accuracy rates, and success rates under different
combinations of logistic regression curve, test score distribution shape, and sample size
were examined for two-stage placement systems. it is shown that even when data are
moderately truncated in such systems (e.g., baseline truncation below K' and 80%
truncation above K'), validity statistics and optimal cutoffs can be estimated with

reasonable accuracy.
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Validating Two-Stage Course Placement Systems When Data Are Truncated

Postsecondary institutions often use standardized test scores when deciding into
which courses students ought to be placed. After selecting a cutoff score, institutional
staff will permit students scoring at or above it to be placed into a standard course (e.g.,
pre-calculus). Students scoring below the cutoff will be placed into a lower-level,
remedial course (e.g., college algebra). For the benefit of their institutions and students,
institutional staff want to make correct placement decisions, of which there are two types:
l)lstudents placed into a standard course have the necessary skills and knowledge to
ultimately succeed in the course, and 2) students placed into a remedial course would not
have succeeded in the standard course had they instead been placed into it. Incorrect
placement decisions may negatively affect both students and institutions. 'For_ example, a
student with better-than-average mathematical skills who is incorrectly placed into a
remedial mathematics course may become frustrated by the expense and time required to
complete an additional course, and may consider transferring to another institution.

If students, parents, or others perceive placement systems as being unfair or
hastily developed, then these systems may be criticized. By establishing statistical
validity evidence that relates standardized test scores or other variables to successful
performance in standard courses, institutions can strengthen their respective rationales for
using certain placement procedures, tests, and cutoff scores. In this way, institutions are
better prepared to respond to potential criticism of their placement systems.

One method for providing course placement validity evidence uses logistic
‘regression and decision theory to describe relationshipsvbetween outcomes in standard

college courses and test scores, estimate proportions of correct decisions given particular



cutoff scores, and identify optimal Acutolffs (ACT, 1994; Noble & Sawyer, 1997; Sawyer,

1989; Sawyer, 1996). In evaluating course placement systems, logistic regression can be

used to estimate the conditional probability of success P in a standard .course, given test
score (or-other predictor variables). Estimated probabilities can then be used with the

marginal distribution of test scores to estimate other course placement validity statistics,
such as the accuracy rate A, which is the estimated proportion of correct placement

decisions. The optimal cutoff score is the cutoff score at which A is maximized.

A~

Anothef validity statistic,v the success rate S, is' the.téstimated proportion of students
succeeding in the standard coﬁrse, among all studeﬁtsv who could have been placed in that
course.

Because students who score below the cutoff typicz.tllly'do' not enroll in the
standard course and do not have course :outcomé data (é.g., grades), the data of course
placement systems are truncated below the cutoff. This presents certain difficulties in
estimating stati'stics,vregardless of the méthod used to evaluate a placement system. For
éxamplé, a logistic regression function, which is cémputed from the data of students who

completed the standard course, must be extrapolated to test scores below the cutoff in

~ A ~

order to estimate P, A, and S over the entire range of placement test scores. Thus, the
statistiés will be uéeful onl.y to the extent that their accuracy is not adversely affected by
truncation.

In general, as truncation increases, the accuracy of validity statistics decreases
(Houston, 1993; Schiel & Noble, 1992; Schiel, 1998; Schiel & King, 1999). Moreover,
hard truncation, a condition in which data are unavailable for all students below the

cutoff, generally results in less accurate validity statistics than does soft truncation, where



data are available for some, but not all, students (Schiel, 1998; Schiel & King, 1999).
One instance in which soft truncation occurs is when an institution does not strictly
enforce a cutoff, but permits students who score below it to enroll in a standard course.
For example, students with low placement test-scores may be confident that they can
succeed in the standard course, or they may furnish to the institution additional
information that suggests they are likely to succeed (e.g., a score on an ancillary, local
placement test). Whatever their reasons for enrolling in the standard course, some of the
students with scores below the cutoff will have standard course outcome data that can be
included with the data of students scoring above the cutoff, thereby augmeniing the
sample used to estimate validity statistics.

Using computer-generated data to estimate conditional probabilities of success,

Schiel (1998) found that fairly accurate estimates of P could be obtained under
simulated soft truncation when the logistic regression curve was steep. In addition,
distributions that wére initially negatively skewed with respect to the predictor (test
score) variable tended to be more resistant to the influence of truncation than did
symmetrical distributions.

When examining estimated optimal cutoff scores, Schiel noted that data with
steep logistic curves tended to produce reasonably accurate estimates (i.€., accurate to
within 1 ACT Assessment scale score.point), even with what was termed “40% soft
truncation. In general, the slope of the logistic curve and the skewness of the marginal
test score distribution appeared to have little to do with the relative accuracy of the

validity statistics unless soft truncation exceeded 40%.



Schiel and King (1999) studied a somewhat different definition of soft truncation.
They used a chance-level score below which all student data were deleted (not to be
confused with the cutoff score). Moreover, the authors specified that observations that
were below the cutoff score, but nearer to it, wopld have a higher probability of being
retained than would those that were nearer to the chance-level score. The rationale for
this was that the nearer a low-scoring student was to the cutoff score, the greater was his
or her likelihood of enrolling in the standard course.

With some exceptions, Schiel “and King observed that' reasonably' accurate

estimates of P could be obtained under varied levels of soft truncation. Although

A

increased degrees of soft truncation were associated with decreased accuracy in P and

A, the decrease was not unacceptably large. In addition, reaéonably accurate optimal
cutoff scores could often be obtained under 40% soft truncation. In some 'ins.tances, the
accuracy of cutoff scores was reasonable under soft trurication as high as 80%.
Truncation in a Two-Stage Placement System

Previous research has only exaimined truncation as it occurs below a given cutoff
score in one-stage placement systems. There are; however, situations in which truncation
is present both below and above the cutoff. For example, in two-stage placement
systems, students are required to take a screening test and, in sorie instanices, a placement

test as well. Such a system is illustrated in Figure 1.



FIGURE 1. Placement Using Screening and Placement Tests

A: Placement Based on Results of Screening Test
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In this placement system, all incoming students are tested with the ACT
Assessment (screening test), a curriculum-based test used in-college admissions and
placement. ACT Mathematics scores are used, for example, as an initial indicator of
whether to place students into either a standard or remedial mathematics course. As
shown in Panel A of Figure 1, all students scoring at or above the screening test-cutoff
score K are placed directly.into the standard cou;se. *Thosc; scofihg below K leSt in;ste.ad
take the COMPASS Algebra test (placement test). COMPASS is a computer adaptive
teéting system that measures students’ academic skills and knowledge in; mathematics,
reading, and writing.

Panel B of Figure 1 illustrates that of_those_ students who must take F}]e placement
test, only students scoring at or above the cutoff score K’ on this test can enroll in the
standard course. Consequently, both .hard and soft truncation of the conditional
placement test score distribution (Region 2) for standard c;)urSC partic‘ipant's‘may‘be
present, as shown in Panel C Hard truncation pccur$ bel.o‘w K', whereas soft truncati;)n
occurs above K'. The dashed curve in Panel ‘C_illus.,trz_ites a nontruncated condition above
K'. Note that soft truncation can also occur below__K’, depending on an institution’s
enforcement of cutoff scores.

Soft truncation (as de;iicfed in Panel C) occurs because studerits who earned 'high
scores (i.e., > K) on the screening test did not have to take the placemént test. Hence,
their placement test scores, which likely would have equaled or exceeded K', are
“missing.” Note that the relationship between the scores on the screening test and tﬁose
on the placement test is imperfect. For example, most students who 'earﬁ low scores on

the screening test (i.e., < K) will also earn low scores on the placement test, but some will
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earn high placement test scores. If the screening test and placement test were perfectly
correlated, then hard truncation would occur above K’ and there would be no need for the
placement test.

This study investigated the effects of truncation on the accuracy of validity
statistics for two-stage placement systems. As described in the following section, the
extent of simulated truncation both below and above K’ was adjusted. It was expected
that as truncation was increased to the point where it was relatively severe (e.g., hard
truncation below K’ paired with 80% soft truncation above K'), the accuracy of estimated
validity statistics would decrease. However, given that truncation in a two-stage
placement system differs from that in a one-stage system, it was possible that
relationships between truncation sevérity and validity statistic accuracy would differ in
the two systems.

Method

Computer-generated data representing a two-stage pl‘acement system were used in
this study. The screening test was assumed to have the score scale and properties of an
ACT Assessment subject area test (e.g., Mathematics). A cutoff score of 20 was selected
for the screening test because of its consistency with cutoffs identified in Houston (1993)
and in ACT’s course placement research (ACT, internal memorandum, September 17,
1998). With certain assumptions concerning the shape of the test score distribution (e.g.,
negative skewness), this cutoff would place approximately 38% of ACT-tested
examinees into the standard course.

It was assumed in this study that hypothetic.al e).(aminees scofing below 20 on the

ACT Mathematics test would take the COMPASS Algebra test. Those scoring at or
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above a selected cutoff score on COMPASS Algebra would be-placed directly into the
standard course. A target COMPASS cutoff of 32 was used for two reasons. First, this
cutoff results in approximately the same percentage of examinees enroliing in the
standard course as does the ACT Mathematics cutoff score of 20, Sec.ond, the cutoff is
near the COMPASS cutoff used by a large state postsecondary system, which uses the
ACT Assessment as a screening test. Due to the initial screening based on ACT
Ma.thematics,'this study assumed that conditionz_ll, truncated COMPA_SS distributions
were positively skewed,  as illustrated in Figqre_l. Moreover, some of the placement
group (nontruncated) distributions were gengrated to have positive skew, to r:nimibcl thgt
exhibited by the distributign of COMPASS Mathema;ics scores for students natiqnwide.

Throughqu .this paper, ACT»M‘athe_matics and COMP‘ASS Algebra scores are
used as example; to facilitate diSCL.lSSiOIl, as well as to provide a rationale for selecting
cutoff scores. However, the results of thc study are not necessarily limited to
mathematics tests, or even to .the_se.two test battleries;.

Generation of Placement Group Data.

Nontruqcated COMPASS score distributions‘were generated to form placement
groups. A placement group consigts of all students for vx{hom placement decisions must
be made and for whom placement test scores are available. I‘r.l this Stl‘,_ldy, da.ta er _}1
placement groups were generated. Placement group distributions contained standard
course outcomes corresponding to the full range of COMPASS scores, including those
that would have been earned by high-scoring ACT Assessmeqt exqminees had .th_ey taken
COMPASS. Validity statistics from these distributions were conside;red “true” values to

which validity statistics from truncated distributions were compared.
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Placement groups were defined according to two sample sizes (100 and 500), two
logistic function slopes (steep and flat), and three levels of skewness-of the marginal
distribution of COMPASS scores (approximately zero, medium positive, high positive).
Table 1 describes the characteristics of the 11 placement groups.

TABLE 1

Placement Group Characteristics

Estimated
Placement optimal Logistic model Skewness of marginal
group N cutoff Slope  parameter estimates COMPASS distribution
1 500 32 Steep bp=-3.67,b;=.12 High pos. (.70)
2 500 33 Steep be=-3.53,b,=.11 Medium pos. (.46)
3 500 32 Steep bp=-3.71,b,=.12 Zero (.18)
4 500 27 Flat byp=-0.63,b;,=.02 High pos. (.66)
5 500 30 Flat by =-1.16, b, = .04 Medium pos. (.47)
6 500 39 Flat bp=-1.49,b,= .04 Zero (.10)
7 100 36 Steep bp=-484,b,=.14 High pos. .70y
8 100 33 Steep bo=-6.36,b,=.19 Medium pos. (.20)
9 100 32 Steep by=-391,b6,=.13 Zero (-0
10 100 34 Flat by=-0.47,b,= .01 High pos. (.82)
11 100 35 Flat by=-1.88, b, =.06 Zero (-.15)

Data were also generated for a twelfth placement group of size n=100 with a flat

slope and medium skewness. It was found, however, that the maximum A for this group

occurred at a COMPASS score of 16. Such a low optimal cutoff score would not likely

be used in actual placement systems. Moreover, the low optimal cutoff prevented the

development of score intervals for purposes of truncation simulation (see the following

section). For these reasons, data from this particular placement group were not analyzed.
The data generation process consisted of the following steps:

1) COMPASS scores were generated using methods similar to those in Houston

(1993). Under the condition of high skewness, for example, random variables

X; and X; were drawn from gamma (1.5,0) and gamma (3,0) distributions,

respectively. The COMPASS score X was defined as X; / (X, + X>), and was
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2)

10

distributed as a beta (1.5,3) random variable. Because X was continuous,
ranging from O to 1, it was multiplied by 99 and rounded to the nearest integer
to obtain a COMPASS score. Table 1 shows the actual skewness for each

placement group.

A logistic regression function was used to calculate P using the obtained
COMPASS score (X). The “slope” parameters (f;) were selected to be
representative of those observed for the data of institutions participating in
ACT’s Course Placement Service. These parameters were fixed to be .12 and
.03, respectively, for the steep and flat slope conditions. The “intercept”
parameters were then found by solving for f in the logistic function
T = [1+e‘xp(—ﬂ0 - B,X)]1", with #=.5 and X =32. These parameters were

fixed to be —3.84 and -.96, respectively, for the steep and flat slope conditions.

* Using these slope and intercept parameters to generate data ensured that when

- logistic curves were subsequently-fitted to the data, their inflection points

3)

4)

(corresponding to the optimal cutoff scores) would occur near a COMPASS
score of 32. Table 1 contains the (fitted) logistic parameter estimates.

Using the probability calculated in Step 2, a random variable Y was selected
from a Bernoulli distribution with Pr(Y =1) = P, for each value of X. Course

success was represented by Y =1; failure by Y =0.

Steps 1 through 3 were repeated 1000 times. Placement groups of size n=500
or n=100 were randomly selected from the “population” of 1000 generated
observations consisting of COMPASS score/course outcome (x,y) pairs. The
population was intended to represent the entire freshman class at an institution

A
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from which a placement group is selected. More than 1000 observations were
generated initially to replace those that were eliminated because they were

below 16 (chance level).

After the data were generated and placement groups selected, P,A,S, andan
optimal cutoff score were calculated for each placement group by first fitting logistic
curves to the generated data. Note that most optimal cutoffs varied from the target cutoff
of 32 due to random error (see Table 1).

Truncation Simulation

Truncation below K'. Fbr the portion of the conditional COMPASS distribution
below K’, two truncation conditions were used. First, a baseline truncation condition was
defined similar to that in Schiel and King (1999), where 0%, 25%, 50%, and 75% of
observations were removed from 4 respective score intervals that were progressively
more distant from K'. Conditions utilizing the baseline condition paired with each level
of truncation above K’ are illustrated in Panél A of Figure 2. The second truncation
condition used was hard truncation, in which all observations below K’ were deleted (see

Panel B of Figure 2).

16



12

FIGURE 2. Score Distributions Under Seven Truncation Conditions

A: Baseline Truncation Below K’ Paired With Truncation Conditions Above K’
10

4+— K' =32

8 No Trunc.
S i Score N N
2 attainable by Base.-Basc.
£ 6 - chance = 15 or - =« = Base.-20%
8" tower
& - - — - Base.-40%
.z 44 v PN N Al Base.-60%
% — - — Basc.-80%
B,

() i ] 1] T T T T T T T 1 l—“r ¥ T T 1] n R + v LS

| 8 15 22 29 36 43 50 57 64 71 78 8 92 99
COMPASS score
B: Hard Truncation-Below K ’Paired With-Truncation Conditions Above K’
10
¢— K’ =32

N 8 Score
o : attainable by
E chance = 15 or No Trunc.
Z 6 ower e Hard-Base.
< — — — Hard-80%
z 4-
= .
g, I

O T T 1 T T T 1 T T T T T T T T T T T 1 T T i 1 H

1 8 15 22 29 36 43 50 57 64 71 78 8 92 99
COMPASS score

Score intervals were defined using empirical data consisting of 26,635
observations from examinees who took both the ACT Assessment and COMPASS, and
who scored below 20 on ACT Mathematics. Each of the four intervals below K’ for the
empirical data encompassed an approximately equal proportion of observations falling
between the chance-level score and K’. The intervals were: 16-18, 19-22, 23-26, and 27-
31. Intervals below K’ for the generated (placement group) data varied somewhat from
these, due to the slightly different shapes of the respective distributions, but were

similarly intended to encompass approximately equal proportions of observations.
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Truncation above K'. Above K', five truncation conditions were paired with the
baseline condition below K, as illustrated in Panel A of Figure 2. The COMPASS score
intervals were defined by examining a percentage polygon of the empirical COMPASS
data described above. Endpoints of the intervals corresponded to slight fluctuations in
the otherwise smooth curve of the polygon. The intervals were: 32-39, 40-48, 49-61, and
62-99, and they contained 46%, 32%, 14%, and 8%, respectively, of the observations
above K'. Intervals for placement groups were defined so that they had widths similar to
those of the empirical distribution. For placement groups with estimated optimal cutoff
scores other than 32, widths for the first 3 intervals were maintained, although the
locations ofthe/intervals changed as a function of K'.

The empirical data used to define the four intervals above K’ were considered to
represent an “intermediate” or “typical” truncation condition, which we called a “60%”
truncation condition. It seems reasonable to assume that this degree of truncation would
occur above the cutoff in many two—stagevplacement systems. Of course, truncation
could be more or less severe than this. Wec wanted the intervals in the (simulated)
intermediate truncation condition to contain percentages of observations as noted above
(46%, 32%, 14%, and 8%). In addition, we wanted truncation to proceed in 20%
increments starting from a’ baseline truncation condition. For example, 20% of the
observations from the baseline condition would be randomly selected ‘and then removed
to create a “20%” truncation condition. Twenty percent of the observations from the
20% condition would then be removed to create a “40%” condition, and so on. In order
to accomplish these goals, we defined the baseline condition above K’ such that 10%,

35%, 75%, and 85% of observations were removed from four respective intervals
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progressively more distant from K’ in the nontruncated placement group distribution. An
80% truncation condition was used to examine the effects of truncation beyond the
intermediate condition.

Due to the fact that placement groui) distributions were similar in shape but not
identical, maintaining interval widths above K’ and using the same amount of truncation
to create baseline conditions resulted in somewhat different percentages of observations
for subsequent truncation conditions. However, these differences were not substantial
and therefore did not likely influence the results.

Panel B of Figure 2 illustrates that hard truncation below K’ was paired with two
truncation conditions above K’. These combinations were chosen to represent moderate
and extreme truncation conditions.

Five hundred data sets of appropriate sample size were simulated for each
combination of the 11 placement groups and 7 truncation conditions, by randomly
selecting and then removing observations within each of the intervals shown in Figure 2.
Table 2 contains truncation sample sizes, by placement group and truncation condition.
Depending on the shape of the placement group distribution and the location of the
optimal cutoff score, truncation samples varied considerably in size, ranging from 10
(Placement Group 7, Hard/80%; Placement Group 10, Hard/80%) to 272 (Placement

Group 1, Baseline/baseline).

19
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TABLE 2

Truncation Sample Sizes, by Placement Group and Truncation Condition

Placement N before Hard/ Hard/ Baseline/ Baseline/ Baseline/ Baseline/ Baseline/

Group truncation __ baseline 80% baseline 20% 40 % 60 % 80%
1 500 160 65 272 239 214 193 177
2 500 157 65 256 224 199 179 164
3 500 170 69 221 186 159 137 120
4 500 172 70 256 221 194 171 154
5 500 174 72 251 216 189 166 149
6 500 164 68 246 213 187 165 150
7 100 25 10 60 54 51 48 45
8 100 28 11 47 41 38 33 30
9 100 35 15 45 37 32 27 25
10 100 26 10 55 50 45 42 39
11 100 28 12 41 35 31 29 25

Figure A in the appendix provides additional information about the truncation
process. It illustrates this process for Placement Group 1, beginning with no truncation
and ending with the Hard/80% truncation condition. Figure A shows how the truncation
sample sizes in Table 2 were obtained for this particular placement group.

Comparing Placement Group and Truncation Sample Validity Statistics

Logistic curves were fit to each of the 500 data sets that were simulated for each
placement group/truncation condition combination. Validity statistics were calculated
using the methods described in Sawyer (1996). Median validity statistics (over 500
simulations) were then calculated for each truncation condition and compared to those

obtained for the respective placement groups, using procedures described in Schiel and
King (1999). For example, the placement group Ps were subtracted from the
baseline/80% truncation condition (median) P's at each COMPASS score point (16-99).

The (unweighted) mean difference over 84 score points (Af’) was then calculated, and
the mean of the absolute values of the differences was also calculated. Finally, estimated

optimal cutoff scores were identified for the placement group (the “true” cutoff) and for
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each truncation condition. Differences between optimal cutoffs for each truncation
condition and its corresponding true optimal cutoff were calculated.
Results
Estimated Probabilities of Success |
Figure 3 illustrates the effects of truncation on P for Placement Group 3 (steep
slope, zero skewness, ﬁ:SOO). Qf all the placement groups, this one was. least affected by
truncation With respect to estimating P. The solid curve in the >figure represents
probabilities for the nontruncatea placement group. Probabilities for. thé seven truncation

conditions are represented by dashed or dotted -curves, which are nearly identical.

Clearly, truncation had little effect on estimating P for this placement group.
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FIGURE 3. Effects of Truncation on
Estimated Conditional Probability of Success

(Placement Group 3: Steep Slope, Zero Skewness, N=500)
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Contrast the logistic regression curves for Placement Group 3 with those of Group

10, which are displayed in Figure 4. Under these conditions (flat slope, high skewness,
n=100), P was relatively poorly estimated. The hard/80% truncation condition (which

included only 10 observations) had the least accurate estimates of P in‘this figure.
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FIGURE 4. Effects of Truncation on
Estimated Conditional Probability of Success

(Placement Group 10: Flat Slope, High Skewness, N=100)
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Table 3 summarizes the effects of truncation on P for all placement groups.

Consistent with previous truncation research, placement groups with large samples

yielded more accurate estimates of P than did those with small samples. Irrespective of

sample size, steep slope conditions produced more accurate estimates than did flat slope

~

conditions. This finding is also consistent with previous research. With respect to P, the

three groups least affected by truncation were 1, 2, and 3; the three groups most affected
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were 8, 11, and 10. Mean !Ai’l ranged from .0003 (Group 3; baseline/60%) to .209

(Group 10, hard/80%). The relationship between extent of truncation and accuracy of P

was similar to that identified in previous research, in that increased truncation was
associated with decreased P accuracy.

TABLE 3

Effects of Truncation on Estimated Probability of Success,
by Placement Group and Truncation Condition

Placement group Truncation

Hard/ Hard/ Baseline/ Baseline/ Baseline/ Baseline/ Baseline/

No. Slope  Skew. N  Mean _ baseline  80% baseline 20% 40 % 60% 80%
I Steep High 500 AP  .0031  -0003  .0005 ~0013  -0006  -0021  -0027
f 0031 0036 0015 0013 0007 0021 0028

2 Steep Med. 500 AP -0031 -0063 -0036  -0071  -0085  -0082  -0079
[sf| 0104 0060 0096 0094 0117 0110 0106

3 Steep Zero 500 AP .0037  .0003  .0029 0009 0000 L0000 L0000
|A13| 0053 .0029 0008 L0009 0006 0003 0019

4  Flat  High 500 AP  -0101 -0084  -0059  -0125  -0160  -0104  -0066
|A13| 0101 0059 0099 0139 0178 0112 0097

5  Flaa  Med. 500 AP 0048 0058  .0053 0042 0027 0055 0051
|A13| 0364 0396 0100 0084 0056 0068 0053

6 Flaa  Zero 500 AP  -0189 0008  -.0194 0033 0078 0135 0203
|A13| 0230 0222 0173 0191 0173 0182 0204

7  Steep High 100 AP  -0108 -0067 -0168  -0116  -O0144  -0179  -.0284
|A13| 0464 0622 0067 0117 0144 0184 0291

8§  Step Med. 100 AP -0170 0079  -0229 0105 0113 0121 0132
0P| 0475 0575 0193 0211 0221 0216 0229

9  Step Zero 100 AP -0084 0070  -.0205 0076 0110 0147 0145
|A13| 0145 0429 0077 0076 0110 0147 0145

10 Flaa  High 100 AP 0443 0368  .0629 0275 0362 0263 0695
|A13| 1507 2090 0469 0340 0381 0307 0754

11 Flat  Zero 100 AP 0375 0231 0325 0266 0264 0292 0351
|A13| 0375 0345 0286 0350 0406 0393 0525
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Estimated Accuracy Rates

Figure 5 displays the effects of truncation on A for Placement Group 3 (steep

slope, zero skewness, n=500), whose estimates were more accurate overall than those of

other groups. The maximum A for this placement group (corresponding to the “true”
cutoff score) occurred at a COMPASS score of 32. For all truncation conditions except
one (hard/baseline), the estimated optimal cutoff score was equivalent to the true optimal
cutoff. Although not discernible in the figure, the optimaf cutoff for the Hard/baseline

condition was underestimated by one COMPASS score point.
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FIGURE 5. Effects of Truncation on
Estimated Accuracy Rate

{Placement Group 3: Steep Slope, Zero Skewness, N=500)
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The effects of truncation on A for a placement group with relatively inaccurate

estimates (Group 10; flat slope, high skewness, n=100) are shown in Figure 6. Locations

of maximum A for the Hard/baseline and Hard/80% conditions (at COMPASS scores of
46 and 47, respectively) were considerably different from those for the other truncation

conditions (between scores of 35 and 38).
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FIGURE 6. Effects of Truncation on
Estimated Accuracy Rate

(Placement Group 10: Flat Slope, High Skewness, N=100)
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The effects of truncation on A are summarized for all placement groups in Table

4. As was found for P, more precise estimates of A were associated with large sample

placement grou'ps.' Steep slope placement groups generally had more precise estimates of
A's than did flat slope placemént groups, irrespective of sample size, but there were some

exceptions. For example, As for Group 4 (flat slope, high skewness, n=500) were

somewhat more precise than those for Group 2 (steep slope, medium skewness, n=500).
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The three placement groups with the most precise estimates of A were 1, 3, and 4; the

least precise estimates were found for Groups 7, 10, and 11. Mean ‘Afl‘ ranged from

.0003 (Placement Group 3; baseline/40% and baseline/60%) to .1216 (Group 10;

hard/80%).
TABLE 4

Effects of Truncation on Estimated Accuracy Rate,

by Placement Group and Truncation Condition

Placement group Truncation
Hard/ Hard/ Baseline/ Baseline/ Baseline/ Baseline/ Baseline/
No. Slope  Skew. N Mean baseline 80% baseline 20% 40% 60 % 80%
| Steep  High 500 AA -0028  .0020  -.0007 0008 .0001 0012 0012
|AA| 0037  .0027 .0009 0014 .0006 0025 0031
2 Steep Med. 500 AA -0035  -.0028  -.0007 0004 -.0000 .0008 -.0002
|AA| 0059  .0042 0074 0080 .0094 0098  .0084
3 Sweep Zero 500 AA -0032  -0015  -.0002 -.0007 -.0002 .0003 .0001
\AA\ 0037  .0018  .0005 0008 0003 0003 0006
4 Flat High 500 AA 0018  .0047  -.0009 -.0020 -.0021 -.0020 -.0031
|AA\ 0049 0063  .0040 0043 0063 0029 0034
5  Flat Med. 500 AA 0204 0213 0033 0032 0016 .0004 -.0012
[AA\ 0213 0223 0035 0032 0019 0034 0039
6 Flat Zero 500 AA 0113 .0100  -.0082 -.0098 -.0097 -.0101 -.0101
[Afi\ 0189 0183 0087 0106 0115 0142 0177
7  Steep High 100 AA 0391 0471 0038 .0063 .0074 0083 0100
[AA[ 0433 0552 0077 0130 0149 0195 0278
8 Steep Med. 100 AA 0314 .0397 .0020 -.0008 .0002 -.0023 -.0016
!AA' 0387 0508  .0080 0119 0109 0134 0131
9  Steep Zero 100 AA 0077 0117 -0042 -.0043 -.0064 -.0077 -.0080
|AA| 0091  .0140 0050 0073 0112 0143 0162
10  Flat High 100 AA 0897  .1146 0122 .0080 0017 .0047 0071
|AA| 0957 1216 0139 0100 0135 0091 0246
11 Flat Zero 100 AA -0131  -0035  .0023 0041 0052 .0023 0067
'Afil 0263 0214 0218 0260 0289 0297 0358
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Optimal Cutoff Scores
Estimated optimél cutoff scores are displayéd in Table 5, by placement group and
truncation condition. The difference between the estimated optimal cutoff for a particular
truncation condition and the true cutoff (shown ir.l the “None” column for each placement
group) is displayed in parentheses beneath the corresponding cutoff.
TABLE 5

Estimated Optimal Cutoff Scores, by Placement Group
(Difference from “True” Cutoff)

Placement group | Truncation

Hard/ Hard/ Baseline/ Baseline/ Baseline/ Baseline/ Baseline/

No. Slope  Skew. N None baseline  80% baseline 20% 40% 60% 80%

] Steep  High 500 32 32 32 32 32 32 32 33

(V) () () 0) 0) () (N

2 Stcep  Med. 500 33 33 33 33 34 34 34 34

0) 0) () (D (nH (N (nH

3 Steep  Zero 500 32 31 32 32 32 32 32 32

-1 ® 0) (0) ® () ®

4 Flat  High 500 27 26 25 26 27 25 27 25

-D (-2) (-1 0) (-2) 0 (-2)

5 Flat Med. 500 30 33 32 30 30 31 : 30 29

(3 (2) ® (0) (N () (-D

6 Flat Zero 500 39 43 43 38 36 35 38 36

4) 4) (- (-3) (-4) -D (-3)

7. Steep  High 100 36 37 39 36 36 37 37 37

(N (3) ® (0) (1 (N (N

8 Steep  Med. 100 33 36 36 33 32 32 32 32

' 3 - (3 (N -D -1 -1 (-D

9 Steep  Zero 100 32 33 34 3] 31 . 30 31 31

: (N (2) - (-1) D (-2) -1 (-

10 °  Flat High 100 34 46 - 47 38 36 - 36 35 35

(12) (13) 4 (2) @ .M (N

11 - Flat Zero 100 35 31 29. | 34+ 34 37 33 35

4 (6 (D) 1) ) (-2) (0)
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Optimal cutoff scores were estimated very accurately for Placement Groups 1, 2,
and 3 over all truncation conditions, deviating no more than one COMPASS score point
from the true cutoff. These results are well within one standard error of measurement
(SEM) for COMPASS, which ranges from about five to si)'( for the Writing Skills,
Rf;ading, and Algebra tests. Cutoffs were accurately estimated for size n=100 placement
groups when the logistic curve was steep. Interestingly, the results for Group 11 were
more accurate than those for Group 6; these groups differed only in their initial sample
sizes (100 and 500, respectively). Generally, one would expect more accurate cutoff
estimates to be associated with large placement groups.

The only placefnént groups yieldiﬁg somewhat inaccurate cdtoff estirﬁates (lLe., 6
or more points above or below the true cutoff) were Groups 10 and 11, both of which had
flat logistic curves and small sample sizes. The Hard/80% condition produced an optimal
cutoff that overestimated the Placement Group 10 true cutoff by 13 scale score points; a
12-point overestimate and a 6-point underestimate were produced by the Hard/baseline
and Hard/80% conditions in Groups 10 and 11, respectively.

Estimated Success Rates

The most accurate estimates of §, as measured by mean IAS" were found for
Placement Groups 1, 3, ;md 9. These groups had steep logistip curves in common, but
differed in initial sample size; Groups 1 and 3 contained 500 observations, whereas

Group 9 contained 100. The least accurate estimates of S were found for Groups 7, 10,
and 11, all of which initially contained 100 observations. Two of these groups had flat

logistic curves.
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The characteristics associated with accurate estimates of S, with a few

A

exceptions, were similar to those associated with accurate A and P: large placement

group samples and steep logistic curves. Mean |A§1 ranged from .0001 (Group 3;

baseline/60%) to .1784 (Group 10; hard/80%). These statistics are summarized, by
placement group, in Table A in the appendix.
Discussion

It was shown in this study that validity statistics and optimal cutoff scores can be
estimated with reasonable accuracy from the truncated data of two-stage course
placement systems. For example, optimal cutoff scores were under- or overestimated by
no more than 4 COMPASS score points, over all combinations of distribution shape and
logistic regression curve, even when baseline truncation below K’ was paired with 80%
truncation above K'. It was only when hard truncation was paired with either baseline or
80% truncation that optimal cutoff score estimates differed substantially from true
cutoffs. Moreover, substantial differences in estimated optimal and true cutoffs were
found only for placement groups having flat l_ogistic curves and small sample sizes under
these two truncation conditions. Consistent with previous research (Schiel, 1998; Schiel
& King, 1999), more accurate estimates of validity statistics and optimal cutoffs were
associated with large sample, steep logistic curve placement groups.

The three least accurate estimated optimal cutoff scores (within 12, 13, and 6
score points of corresponding true cutoffs) occurred for truncation samples containing 26,
10, and 12 observations, respectively. It is unlikely that a postsecondary institution
would use logistic regression and decision theory to evaluate test score/course outcome

relationships for such small samples, because the accuracy of estimated logistic
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regression parameters declines significantly for very small sample sizes (Houston, 1993).
Optimal cutoff scores over- or undere§timated to this extent therefore have a small
likelihood of occurring in practice. A more typical over- or undercstimatg, given the
results of this study, would be about four COMPASS score points.

What are the practical implications of an institution employing an optimal cutoff
score for a standard course that is over- or underestimated by four COMPASS score
points? One way to answer this question is by examiningAac,curacy rates. _Considering
Placement Group 10 (flat slope, high skewness, n=100) as an example, the

Baseline/baseline truncation condition, based on 55 observations, yielded a median

estimated optimal cutoff of 38. The median A corresponding to this cutoff indicated that

58.2% of students would be correctly placed if it were used. The true cutoff for Group 10

was 34; the corresponding A, expressed as a percentage, was 58.1.. Thus, in this
instance, there would be no substantive effect of using a cutoff score that was

underestimated by four COMPASS score points. Note that absolute differences between

the median A for the other placement group that had four-point over- or underestimates
(Group 6; flat slope, zero skewness, n=500) were .005 or less, similarly suggesting no
substantive effect of using a cutoff score within 4 score points of the true cutoff.
Postsecondary institutions that experience moderate -truncation (i.e.,
baseline/baseline to baseline/80%) in two-stage course placement systems can expect to
estimate validity statistics and optimal cutoff scores with reasonable accuracy. It is only
when truncation is extreme (i.e., hard/baseline or hard/80%), logistic regression curves
are flat, and sample sizes are very small (e.g., about 25 or less) that institutions risk

obtaining optimal cutoff scores that differ substantively from those of nontruncated
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placement group distributions. One might consider a “substantive” difference to be two

or more percentage points between the A corresponding to a true cutoff and the A for an

estimated optimal cutoff. In a placement group consisting of about 100 students, for

example, a two-percentage point decrease in A would mean that about 2 studehts would
be incorrectly placed as a result of estimation error.

In a two-stage course placement system, truncation occurs both below and above
the cutoff score on the placement test, thereby differentiating such a system from a one-
stage system. One m}ight therefore expect that the effect of truncation on estimated
validity statistics in a two-stage system would differ from that occurring in a one-stage
system, which is indeed the case. When the results of this study are compared with those
of previous studies that examined the effects of truncation in one-stage systems, one
noteworthy difference pertains to the accuracy of the respective optimal cutoff scores. In
Schiel and King’s (1999) one-stage system research, for example, the largest difference
between a true cutoff and an estimated optimal cutoff was 17 ACT Assessment score
points. This is larger than the largest difference observed in the present study (13
COMPASS score points; Group 10, hard/80%). Both of these results were obtained from
placement groups with flat logistic curves and a high degree of skewness.

The difference between these results becomes intriguing when one considers that
the Schiel and King result was based on a joint distribution of ACT scores and course
outcomes containing considerably more observations than did the COMPASS
score/course outcome distribution in the present study (330 vs. 10, respectively). One
might expect a more accurate estimate to be associated with a larger sample, but this is

clearly not the case. Moreover, the score scales of the two instruments differ
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considerably. The ACT Assessment score scale has 36 possible points, and a SEM (for
the Composite) of about.1. The COMPASS score. scale, on the other hand, has 84
possible points and a' SEM of about 6. . These characteristics "suggest that the
underestimation of the optimal ACT cutoff in the example from Schiel and King is
considerably greater, in an absolute sense, from the underestimation occurring in the
COMPASS example in the present study..

What might account for. the -difference ‘between two-stage and one-stage
placement system results? One possibility is the shape of the test scgre_/course outcome
distribution; the ACT Assessment/course outcome distribution in the example from the
former study was highly negatively skewed, whereas the COMPASS/course outcome
distribution in the present study example is highly positively skewed. In one-stage
systems, higher pe}gative.skewncs's_ is associated with more accurate estimates of validity
sta_pistics. The reason for this is thé:lt when high negati'yve skewnegs is present, a greater
per‘c'gntage__of observations lie in the nontruncated region of the joint distribution. Such
an association is le',ssy evident in a two-stage system,_because the skewness is positive and
truncation occurs in both tails of the distributionj It is possible that future research could
provide additional insight into reiationships between truncation and distribution shape.
Nevertheless, it is. jmportant for _in;erprgtatioqal purposes to consider that oﬁe-stage
placement systems are inherently different from two-stage systems. Given the findings
presented here, two-stage systems appear to be more resistant to the effects of truncation
in the context of estimating course placement validity statistics.

To alleviate estirﬂation proBlems that might res'uit from soft tfuncation above K',

institutions could consider administering the placement test to a group of students (e.g.,
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an entering freshman class) who scored at or above K on the screening test. Course
placement decisions would not have to be changed for these students. Institutions could
then estimate validity statistics and optimal cutoff scores from a distribution of placement
test scores and course outcomes that was not truncated above K'. A disadvantage to this
approach is, of course, that institutions would have to test a larger number of students
than usual with the placement test. Such an approach might be of interest to.institutions
whose data are severely truncated, based on small samples, and yield flat logistic curves,
as they have the greatest risk of estimating inaccurate optimal cutoff scores. Most
institutions, however, are not likely to benefit much from administering the placement
test to students who scored at or above K, because truncation will affect their estimates
only minimally.

In one-stage placement systems, A is a function of conditional probabilities
estimated from the data of students who completed the standard course and the empirical

distribution of test scores for the placement group, which includes the scores of students

who did not complete the standard course. In two-stage systems, although both a

screening test and a placement test are used, A is typically calculated just as it is in a
one-stage system, using the distribution of placement test scores only. As a consequence,
this statistic does not reflect the standard course outcomes of those students who scored

high on the screening test, were placed directly into the standard course, and therefore did

not have to take the placement test. This A could therefore differ somewhat from one

that was instead based on both screening and placement test data.

Research that examines alternative ways of calculating A in two-stage placement

systems would be beneficial, but would not likely alter the conclusions reached in this
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study, which controlled for this potential methodological problem. The placement groups
in this study differed deliberately from those of actual two-stage placement systems in
that they contained test scores and standard course outcomes for the full distribution of
placement test scores, including those that would likely have been earned by students
who earned high screeniﬁg test scores and did not take the placement test. Consequently,
the placement test score distributions for the placement groups, which would ordinarily
be truncated with respect to the screening test in a two-stage system, were not truncated

in this study. This allowed more precise comparisons between true (placement group)
As and those reflecting the effects of truncaltion.

Another reason that alternative methods of calculating A would not change this
study’s conclusions is that the effects of truncation were investigated in this study by

considering differences between As (and other validity statistics) calculated when
truncation was and was not present. The size of such differences should remain relatively
constant across different methods of calculating a particular validity statistic, provided
that the same method is applied consistently under both nontruncated and truncated

conditions.
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TABLE A

Effects of Truncation on Estimated Success Rate,
by Placement Group and Truncation Condition

Placement group Truncation

Hard/ Hard/ Baseline/ Baseline/ Baseline/ Baseline/ Baseline/

No. Slope Skew. N Mean baseline 80% baseline 20% 40% 60 % 80%
I Step High 500 AS 0016 0007  -.0009 0010 -0006  -0018  -.0027
|A§| 0016 0017 0009 0010 0006 0018 0027

2 Steep Med. 500 AS  -0072  -0058  -.0083 0085  -0104  -0099  -.0095
|A§| 0072 0058  .0083 0085 0104 0099 0095

3 Steep Zero 500 AS  .0004 0009  -.0003 0002 0002 -.0000 0007
|A§’ 0012 0009  .0003 0002 0002 0001 0007

4  Flaa  High 500 AS  -0113 -0042 -0116  -0164  -0210  -0138  -0103
|A§ 0113 0042 0116 0164 0210 0138 0103

S Flat Med 500 AS 0244 0265 0101 0080 0053 0077 0060
‘A§| 0263 - 0285 0101 0080 0053 0077 0060

6  Flat  Zero S00 AS  -0073  -0088  -.0103 0094  -0040 0022 o111
|A§ 0118 0119 0113 0112 10080 0078 Ol11

7 Steep High 100 AS 0087 0057  -.0065 0118 -0136  -0190  -.0305
lAf‘ 0188 0245 0065 0118 0136 0190 0305

8  Step Med. 100 AS 0004 -0045 0071 0084 0086 0090 0096
|A§| 0107 0148  .0071 0084 0086 0090 0096

9  Steep Zero 100  AS 0012 0046  .0006 0035 0051 0076 0090
|A§ 0039 0078  .0012 0035 0051 0076 0090

10  Flaa  High 100 AS 1229 1641 0573 0418 0489 0382 0965
‘A§| 1352 1784 0573 0418 0489 0382 0965

11 Flaa  Zero 100 AS 0227 0327 0326 0391 0426 0426 0550
|A§ 0227 0RT 0326 0391 0426 0426 0550
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.FIGURE:A. Truncation. Example::.. - -~

(Placement Group 1: Steep slope, high skewness, n=500)

A. No Truncation

/ Opt. cutoff
score
(K' =32
n =190 n =310
<A A
n=53 60  3i 46 96 64 86 64
. A A A ISt A A
1 16-20 21-24 25-27 28-31 32:---39 40-----48 49------- 61 62--mmmmmeeeeo- 99
B. Baseline/Baseline / K'=32
Zero, 25, 50, and | Ten, 35, 75, and
75% of the obs. 85% of the obs.
have been . =112 n =160 have been
randomly selected L —"~ ~ | — —" ~ | randomly selected
and removed from and removed from
the 1%, 2", 3" and the 1%, 2™, 3" and
4™ intervals below 4™ intervals above
K', respectively. n=13 30 23 46 86 42 22 10 K', respectively.
A A A AN —M
! 16-20 21-24 25-27.28-31 32----39 40-----48 49-----6] 62---------- 99
C. Baseline/20%
/ K'=32
Twenty percent
of the obs. from
the
n=112 n=127 Baseline/baseline
A AL condition have
- I o been randomly
selected and
removed from
each interval
n=13 30 23 46 69 33 17 8 above K'.
A A A A A —A
1 16-20 21-24 25-27 28-31 32----39 40-----48 49-------61 62----rrrmremn 99
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FIGURE A (continued). Truncation Example
(Placement Group 1: Steep slope, high skewness, n=500)
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of the obs. from
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n=112 n=102 condition have
~ been randomly
- o - D selected and
removed from
each interval
above K.
n=13 30 23 46 55 27 i4 6
A A AN A
| 16-20 21-24 25-27 28-31 32----39 40----- 48 49------- 61 62+-eemvmnnann 99
E. Baseline/60% / K'=32
Twenty percent
of the obs. from
the Baseline/40%
n=112 n =81 condition have
P e A - been randomly
- I selected and
removed from
each interval
above K'.
n=13 30 23 46 44 21 it 5
AH A AdH AN A —A
| 16-20 21-24 25-27 28-31 32----39 40----48 49------6} 62---=rcecnea 99
F. Baseline/80% / K'=32
Twenty percent
of the obs. from
the Baseline/60%
n=112 n =65 condition have
— — ~ | — — ~ been randomly
selected and
removed from
each interval
n=13 30 23 46 | 35 17 9 4 above K.
N R e N =
I 16-20 21-24 25-27 28-31 32----39 40-----48 49--eeoa6] 62--mmeameemee 99
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FIGURE A (continued). Truncation Example
(Placement Group 1: Steep slope, high skewness, n=500)

G. Hard/Baseline

/ K'=32

Ten, 35, 75, and
85% of the obs.

have been

- n =0 n =160 randomly selected
All obsevations — o - pu A ~ and removed from
have been the 1*, 2™ 3" and
removed below 4™ intervals above

(2 .
K'. K’', respectively.
n= 0 0 0 0 86 42 22 10
A A A A S A —A
! 16-20 21-24 25-27 28-31 32----39 40-----48 49-----61 62 99

H. Hard/80%

/ KI:32
Twenty percent
of the obs. from
the Baseline/60%
n =0 n =65 condition have
— A ~ | ~ — ~ been randomly
selected and
removed from
each interval
n=0 0 0 0 35 17 9 4 above K.
A AhH S A —A
1 16-20 21-24 25-27 28-31 32----39 40-----48 49---<---6 | 62--wenvacem~ 99
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